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We investigate how the degree-mixing pattern affects the emergence of cooperation in the networked pris-
oner’s dilemma game. Our study shows that when a network becomes assortative mixing by degree, the
large-degree vertices �hubs� tend to interconnect to each other closely, which destroys the sustainability among
cooperators and promotes the invasion of defectors, whereas in disassortative networks, the isolation among
hubs protects the cooperative hubs in holding onto their initial strategies to avoid extinction.
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Understanding the emergence of cooperation has drawn
considerable attention in diverse fields including sociology,
economics, and biology �1�, and evolutionary game theory
provides a powerful framework to study it �2�. As a general
metaphor to investigate the conflict among altruists and self-
ish individuals, the prisoner’s dilemma �PD� has been exten-
sively explored �3�. In the PD game, two individuals decide
whether to cooperate or defect to obtain some payoffs. They
receive the reward R for mutual cooperation and the punish-
ment P for mutual defection. If one chooses cooperation and
the other chooses defection, the former’s payoff is S and the
latter gets T as the temptation to defect. The order of four
payoffs is T�R� P�S in the PD game. Since the pioneer-
ing work of Nowak and May �4�, spatial structures, such as
lattices �5�, regular random graphs �6�, small-world networks
�7�, and scale-free networks �8–11�, have been widely inves-
tigated and well recognized as one of the key mechanisms
for the cooperative dynamics in the networked PD game
�12�. More relevant to the subject of this Brief Report, San-
tos et al. and Pacheco have shown that cooperation is the
dominating trait in scale-free networks �8–10�, and they
found that the interconnections among the hubs favor the
dominance of cooperation in the PD game �10�. More re-
cently, Gomez-Gardenes et al. pointed out that in scale-free
networks, there exists a single cluster composed of the hub
cooperators �C-hubs�, which provides further insight to un-
derstand the cooperative dominance in heterogeneous net-
works �11�.

It has been witnessed that real networks display different
mixing patterns of degree �13–15�. To measure the degree
mixing of a network, Newman defined the assortativity co-
efficient in terms of the Pearson correlation coefficient: rk
= ��ij�− �i��j�� / ��i2�− �i�2�, where i and j are the remaining
degrees at the two ends of an edge and �·� means the average
over all edges �13�. When a network is assortatively �disas-
sortatively� mixed by degree, rk is positive �negative� and the
highly connected vertices tend to choose those vertices with
similar �dissimilar� degrees as neighbors. An uncorrelated
network exhibits the neutral degree-mixing pattern whose
rk=0. Usually, social networks are assortatively mixed, while
many technological and biological networks generally dis-
play disassortatively mixing patterns.

It is well known that the assortative degree-mixing pattern

of a network significantly influences the collective dynamical
behaviors, such as epidemic spreading �13�, node percolation
�14�, and synchronization �15�, of the network. However, to
the best of our knowledge, the role of the degree-mixing
pattern in the cooperative behavior in the PD game has not
been addressed to date. In this Brief Report, we focus on
how the degree-mixing pattern influences the evolution of
cooperation in the PD game. Our investigation shows that an
uncorrelated network promotes the emergence of coopera-
tion. However, when the network becomes assortative,
highly connected vertices will stick together as a tight core
group sharing many neighbors among them, which inhibits
the sustainability among cooperators and promotes the inva-
sion of defectors. In a network displaying the disassortative
mixing pattern, the isolation among hubs will make the ini-
tial C-hubs insist on their cooperative strategies for a wide
range of temptation.

Consider a network where each individual occupies a site.
These individuals update their strategies according to the
replicator dynamics adopted in �8�: At every the generation,
each individual i plays the game with its neighbors and ob-
tains its accumulated payoff Pi. When individual i updates its
strategy, it randomly selects a neighbor j and adopts j’s strat-
egy with probability �Pj − Pi� / ��T− P�kmax�, where kmax is the
highest degree between i and j. During the evolution process,
all individuals update their strategies synchronously. Follow-
ing �4�, we set P=0, T=b�1, R=1, and S=0, where b is the
temptation to defect. To generate different degree-mixing
networks, we employ the Xulvi-Brunet–Sokolov �XS� algo-
rithm proposed in �14�: To generate an assortative network,
at each step, two edges in a given network with four different
vertices are randomly selected; then, one edge links the two
vertices with smaller degrees and the other connects the two
vertices with larger degrees. Multiple connections are forbid-
den in this process. By repeating this operation, an assorta-
tive network is generated without changing the vertex de-
grees of the original network; i.e., the number of edges is
unchanged. Similarly, a disassortative network can be pro-
duced with the rewiring operation in the mirror method.

We first use the Barabási-Albert �BA� model �16� to ini-
tialize a neutrally degree-mixing scale-free network with
5000 vertices and the average degree �k�=4. Since the
degree-mixing patterns of most real-world networks fall in
the region of �−0.3, 0.3� �13�, we reproduce a group of net-
works with the XS algorithm to regulate their assortative
coefficients into this range. An equal percentage of coopera-*xli@sjtu.edu.cn
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tion or defection strategies is randomly initialized among the
individuals. We characterize the cooperative behaviors with
two crucial quantities: one is the extinction threshold of co-
operators, bc, above which the cooperators are extinct in the
network, and the other is the frequency of cooperators, fc,
which is obtained by averaging over 10 000 generations after
the transient time of 20 000 generations.

Figure 1 shows the results of the cooperators’ frequency
fc versus the temptation to defect b of a group of scale-free
networks, whose assortative coefficients vary from 0.0 to 0.3
�17�. We observe that, compared with the case of the uncor-
related network �rk=0.0�, the cooperation in assortative net-
works is significantly inhibited, because not only the coop-
erators’ frequency of assortative networks is lower than that
of uncorrelated networks, but also the cooperators are earlier
to disappear in the former case than in the latter one.

Now, we focus our attention on the role of the assortative
mixing to the extinction threshold of cooperators. It has been
pointed out that in a BA scale-free network, the hubs play a
prominent role in maintaining the cooperation �10�, which
uniformly select vertices with large degree or small degree as
their neighbors. Therefore, on the one hand, hubs can di-
rectly communicate with each other. On the other hand, they
share a few common neighbors and a defector is hard to
invade a C-hub. For example, we set the most connected
vertex of a BA network as defector and the other vertices as
cooperators at the initial state. Figure 2 shows how the hub
defector �D-hub� influences its cooperative neighbors in the
network. In Fig. 2�a�, since the D-hub obtains a higher pay-
off at the beginning, its small-degree neighbors have the ten-
dency to learn its strategy; therefore, the number of coopera-
tors around the D-hub decreases rapidly and the D-hub’s
payoff in return reduces quickly. However, the payoffs of
those large-degree neighbors around the D-hub decrease
slightly because they share a few neighbors. In the BA net-
work of Fig. 2, the second largest-degree vertex is directly
connected to the D-hub with 12 shared neighbors. Conse-
quently, the cooperative neighbors around the C-hub only
decrease 10% under the influence of the D-hub. Hence, the
C-hub always holds on its initial strategy and its payoff is
higher than those of the defectors, which results in the fact

that the D-hub has the tendency to learn the strategy of its
cooperator neighbor and become cooperator. Therefore, in
uncorrelated scale-free networks, C-hubs are efficiently pro-
tected from the invasion of defectors, which promotes the
emergence of cooperation.

However, when an uncorrelated scale-free network be-
comes more and more assortative mixing, the large-degree
vertices tend to compose a core group sharing more neigh-
bors than before, which promotes the diffusion of defectors
and inhibits the emergence of cooperation in assortatively
mixing networks. We illustrate this phenomenon with the
subgraph shown in Fig. 3, where two hubs share m lowly
connected neighbors. At the initial state, only one hub is
defector and the other vertices are cooperators. The C-hub
has the tendency to become defector because its payoff �cm
is always less than the D-hub’s payoff �cmb, where �c is the
cooperator percentage of neighbors among the two hubs.
Then, the rest of cooperators �lowly connected vertices� will
vanish in the network with two D-hubs. Figure 2�b� shows
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FIG. 1. �Color online� Frequency of cooperators, fc, as a func-
tion of the temptation to defect, b, in the scale-free networks with
different assortative coefficients rk=0.0,0.1,0.2,0.3, respectively.
The networks have 5000 vertices and 4 connections per vertex.
Each datum is averaged over 10 different networks with 10 runs for
each network.
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FIG. 2. �Color online� Cooperation frequency of hubs’ neigh-
bors as a function of generation when the assortative coefficients rk

of a group of scale-free networks vary from 0.0 to 0.3. The network
have 5000 vertices and average degree of �k�=4. Initially only the
maximum degree vertex is the defector and others are cooperators.
The temptation to defect b=1.5. Evolution of cooperators around
�a� the largest-degree defector with 149 connections and �b� the
second largest-degree cooperator with 147 neighbors are plotted. As
rk increases from 0.0 to 0.3, the two hubs share 12, 25, 43, 65
neighbors, respectively.

FIG. 3. Illustration of a subgraph, in which two connected cen-
tral vertices have the same neighbors.
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how the neighbors of the C-hub with the second highest
degree are invaded by the D-hub with the highest degree in
an assortative network. It can be observed that the more
shared neighbors exist between the two hubs, the more ver-
tices are willing to become defectors and the fewer coopera-
tor neighbors surround the C-hub. Therefore, the ability to
self-sustain the cooperation becomes weaker when the hubs
closely stick together, which means a defector is easier to
invade the hubs and to diffuse among the individuals, result-
ing in the cooperators vanishing earlier in assortative scale-
free networks.

Moreover, when b is less than bc, the cooperators’ fre-
quency in assortative networks is also lower than that of the
uncorrelated ones. To explain it, we plot the relative strategy
distribution per degree of the networks with rk=0.0 and 0.3
at the steady state, as shown in Fig. 4. There exist more
defectors with small degrees in an assortative network than
those in an uncorrelated network, and the C-hubs sustain
each other in both categories of networks. In an assortative
network, vertices with similar degrees tend to be intercon-
nected, and thus the lowly connected vertices are willing to
select vertices with a small degree rather than hubs as their
neighbors. Therefore, the influence of the hubs to small-
degree vertices is weaker in assortative networks, and the
defection action is easier to diffuse among the small-degree
vertices. Hence, the assortatively mixing pattern inhibits the
emergence of cooperation.

Similarly, we investigate how the emergence of coopera-
tion is affected by the degree-mixing pattern in disassortative

networks. As shown in Fig. 5, the frequency of cooperators
in disassortative networks is lower than that in the uncorre-
lated case for a wide range of b. In a disassortative network,
there are few interconnections among hubs, the sustainability
of cooperation among hubs is destroyed, and a hub can only
influence the actions of its local neighbors. In Fig. 6�a�, we
initialize half of the vertices as cooperators and the other half
as defectors. Figure 6�b� shows that at steady state the hubs
still hold onto their initial strategies and only those small-
degree vertices change their strategies. Therefore, the fre-
quency of cooperators of disassortative networks is lower
than that of uncorrelated networks. Furthermore, as shown in
Fig. 5, the extinction threshold of cooperators, bc, becomes
higher when rk decreases, which implies that the cooperators
can be sustained for a larger temptation in disassortative net-
works. That is due to the fact that a C-hub is only surrounded
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FIG. 4. Distribution of stationary strategies in a scale-free net-
work with �a� rk=0.0, �b� rk=0.3, and b=1.5. Cooperators �C� and
defectors �D� are denoted by gray bars and black bars, respectively.
Each bar adds up to a total fraction of 1 per degree, and the gray
and black fractions are directly proportional to the relative percent-
age of the respective strategy for each degree k. The data is ob-
tained by averaging 10 runs on a network with 1000 vertices and 4
connections per vertex so that the figures can be seen clearly.
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FIG. 5. �Color online� Frequency of cooperators, fc, as a func-
tion of b in the scale-free networks with rk=−0.3,−0.2,−0.1,0.0,
respectively. Other network parameters are the same as in Fig. 3.
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FIG. 6. Distribution of strategies in a disassortative network
with rk=−0.3. �a� Initial strategies distribution and �b� stationary
strategies distribution for b=1.5, where the strategies distribution of
hubs at the end time are unchanged comparing with the initial case.
Other network parameters are same as in Fig. 4.

BRIEF REPORTS PHYSICAL REVIEW E 76, 027101 �2007�

027101-3



by low-degree neighbors; it is easy to insist on its initial
strategies and compose a cluster of cooperators with its
neighbors to withstand the invasion of defectors. Therefore,
the disassortatively mixing pattern destroys the communica-
tion among hubs, which, on the one hand, leads to the dis-
appearance of cooperation sustainability among hubs and the
decrease of cooperators’ frequency and, on the other hand,
protects the cooperation from extinction for a larger region
of temptation.

Finally, we observe the average degree of defectors in the
networks with different degree-mixing patterns in Fig. 7. It
can be found that for the same fraction of defectors, the
average degree of defectors in assortative networks is always
lower than that in uncorrelated networks, which indicates
that the defectors have fewer connections in the former case
than those in the latter case. When the degree-mixing pattern

becomes disassortative, there exist hubs which hold on their
initial defection strategy, and thus the average degree of de-
fectors increases.

In conclusion, in this Brief Report we addressed the roles
of degree-mixing patterns in cooperative evolution. Our
study supports the conjecture that uncorrelated networks are
more willing to promote the emergence of cooperation than
assortative or disassortative networks �18�. In particular, in
the case of assortative networks, both the frequency and the
extinction threshold of cooperators decrease, since the dense
core group weakens not only the cooperation sustainability
among hubs but also the communications from hubs to
small-degree vertices. In contrast, when a network is mixed
disassortatively, the isolation among hubs results in the fact
that a hub tends to hold on its initial strategy and the coop-
erators’ frequency of a disassortative network is therefore
less than that of an uncorrelated network, while the coopera-
tors are difficult to disappear in the former case. Last but not
least, we should point out that our findings in this Brief Re-
port mainly focus on the influence of degree mixing on the
cooperation emergence of static networks. On the other hand,
the coevolution of strategy and structure lead to self-
organized dynamical networks exhibiting abundant degree-
mixing patterns �19�, where the roles of mixing patterns in
cooperation deserve further more investigations in the near
future.
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FIG. 7. �Color online� Average degree of defectors as a function
of the fraction of defectors in the scale-free networks with different
mixing patterns. Networks parameters are the same as those in Figs.
3 and 6.
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